Differential Equations Question 164

Question: The solution of the equation $ \frac{dy}{dx}+y\tan x=x^{m}\cos x $ is

Options:

A) $ (m+1)y={x^{m+1}}\cos x+c(m+1)\cos x $

B) $ my=(x^{m}+c)\cos x $

C) $ y=({x^{m+1}}+c)\cos x $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

This is the linear equation of the form $ \frac{dy}{dx}+Py=Q $ , where $ P=\tan x $ and $ Q=x^{m}\cos x $

Now integrating factor (I.F.) $ ={e^{\int{Pdx}}}={e^{\int{\tan dx}}} $

$ ={e^{\log \sec x}}=\sec x $

Thus solution is given by, $ y.{e^{\int{Pdx}}}=\int{Q}.{e^{\int{Pdx}}}dx+c $

Therefore $ y.\sec x=\int{x^{m}}.\cos x.\sec xdx+c $

Therefore $ y\sec x=\frac{{x^{m+1}}}{m+1}+c $

Therefore $ (m+1)y={x^{m+1}}\cos x+c(m+1)\cos x $ .