Differential Equations Question 165

Question: An integrating factor for the differential equation $ (1+y^{2})dx-({{\tan }^{-1}}y-x)dy=0 $

[MP PET 1993]

Options:

A) $ {{\tan }^{-1}}y $

B) $ {e^{{{\tan }^{-1}}y}} $

C) $ \frac{1}{1+y^{2}} $

D) $ \frac{1}{x(1+y^{2})} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ (1+y^{2})dx-({{\tan }^{-1}}y-x)dy=0 $

Therefore $ \frac{dy}{dx}=\frac{1+y^{2}}{{{\tan }^{-1}}y-x} $

Therefore $ \frac{dx}{dy}=\frac{{{\tan }^{-1}}y}{1+y^{2}}-\frac{x}{1+y^{2}} $

Therefore $ \frac{dx}{dy}+\frac{x}{1+y^{2}}=\frac{{{\tan }^{-1}}y}{1+y^{2}} $

This is equation of the form $ \frac{dx}{dy}+Px=Q $

So, I.F. $ ={e^{\int{Pdy}}}={e^{\int{\frac{1}{1+y^{2}}.dy}}}={e^{{{\tan }^{-1}}y}} $ .