Differential Equations Question 166

Question: Solution of the differential equation $ \frac{dy}{dx}+\frac{y}{x}=\sin x $ is

[Kerala (Engg.) 2005]

Options:

A) $ x(y+\cos x)=\sin x+c $

B) $ x(y-\cos x)=\sin x+c $

C) $ x(y\cdot \cos x)=\sin x+c $

D) $ x(y-\cos x)=\cos x+c $

E) $ x(y+\cos x)=\cos x+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{dy}{dx}+\frac{y}{x}=\sin x $ ; I.F. $ ={e^{\int{\frac{1}{x}dx}}}={e^{\log x}}=x $ \ $ yx=\int{x\sin xdx} $

Therefore $ yx=\int{x\sin xdx} $

Therefore $ xy=-x\cos x+\sin x+c $

Therefore $ x(y+\cos x)=\sin x+c $ .