Differential Equations Question 169

Question: Solution of the equation $ (x+\log y)dy+ydx=0 $ is

Options:

A) $ xy+y\log y=c $

B) $ xy+y\log y-y=c $

C) $ xy+\log y-x=c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ xdy+ydx+\log ydy=0 $

Therefore $ xdy+ydx=-\log ydy $

$ y\frac{dx}{dy}+x=-\log y $

Therefore $ \frac{dx}{dy}+\frac{x}{y}=-\frac{\log y}{y} $

I.F. = $ {e^{\int{\frac{1}{y}dy}}}=y $

Hence solution is $ x.y=-\int{y.\frac{\log ydy}{y}+c} $

Therefore $ xy=-(y\log y-y)+c $

Therefore $ xy+(y\log y-y)=c $ .