Differential Equations Question 170

Question: The solution of the differential equation $ x\frac{d^{2}y}{dx^{2}}=1 $ , given that $ y=1,\ \frac{dy}{dx}=0 $ when $ x=1 $ , is

Options:

A) $ y=x\log x+x+2 $

B) $ y=x\log x-x+2 $

C) $ y=x\log x+x $

D) $ y=x\log x-x $

Show Answer

Answer:

Correct Answer: B

Solution:

$ x\frac{d^{2}y}{dx^{2}}=1 $

Therefore $ \frac{d^{2}y}{dx^{2}}=\frac{1}{x} $

Therefore $ \frac{dy}{dx}=\log x+c_1 $

Therefore $ y=x\log x-x+c_1x+c_2 $

(on integrating twice) Given $ y=1 $ and $ \frac{dy}{dx}=0 $ at $ x=1 $

Therefore $ c_1=0 $ and $ c_2=2 $ Therefore, the required solution is $ y=x\log x-x+2 $ .