Differential Equations Question 171
Question: The solution of the differential equation $ \frac{d^{2}y}{dx^{2}}=-\frac{1}{x^{2}} $ is
[MP PET 2003]
Options:
A) $ y=\log x+c_1x+c_2 $
B) $ y=-\log x+c_1x+c_2 $
C) $ y=-\frac{1}{x}+c_1x+c_2 $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
$ \frac{d^{2}y}{dx^{2}}=-\frac{1}{x^{2}} $ . Now integrating both sides, we get $ \frac{dy}{dx}=\frac{1}{x}+c_1 $
Therefore $ y=\log x+c_1x+c_2 $ .