Differential Equations Question 171

Question: The solution of the differential equation $ \frac{d^{2}y}{dx^{2}}=-\frac{1}{x^{2}} $ is

[MP PET 2003]

Options:

A) $ y=\log x+c_1x+c_2 $

B) $ y=-\log x+c_1x+c_2 $

C) $ y=-\frac{1}{x}+c_1x+c_2 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{d^{2}y}{dx^{2}}=-\frac{1}{x^{2}} $ . Now integrating both sides, we get $ \frac{dy}{dx}=\frac{1}{x}+c_1 $

Therefore $ y=\log x+c_1x+c_2 $ .