Differential Equations Question 172

Question: The solution of the differential equation $ {{\cos }^{2}}x\frac{d^{2}y}{dx^{2}}=1 $ is

Options:

A) $ y=\log \cos x+cx $

B) $ y=\log \sec x+c_1x+c_2 $

C) $ y=\log \sec x-c_1x+c_2 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ {{\cos }^{2}}x\frac{d^{2}y}{dx^{2}}=1 $

Therefore $ \frac{d^{2}y}{dx^{2}}={{\sec }^{2}}x $

On integrating, we get $ \frac{dy}{dx}=\tan x\pm c_1 $

Again integrating, we get $ y=\log \sec x\pm c_1x\pm c_2 $ .