Differential Equations Question 173

Question: The solution of $ \frac{d^{2}y}{dx^{2}}={{\sec }^{2}}x+xe^{x} $ is

[DSSE 1985]

Options:

A) $ y=\log (\sec x)+(x-2)e^{x}+c_1x+c_2 $

B) $ y=\log (\sec x)+(x+2)e^{x}+c_1x+c_2 $

C) $ y=\log (\sec x)-(x+2)e^{x}+c_1x+c_2 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{d^{2}y}{dx^{2}}={{\sec }^{2}}x+xe^{x} $

On integrating, $ \frac{dy}{dx}=\tan x+xe^{x}-e^{x}+c_1 $

Again, $ y=\log (\sec x)+xe^{x}-e^{x}-e^{x}+c_1x+c_2 $

Thus required solution is $ y=\log (\sec x)+(x-2)e^{x}+c_1x+c_2 $ .