Differential Equations Question 174

Question: If $ \frac{d^{2}y}{dx^{2}}=0, $ then

[UPSEAT 1999]

Options:

A) $ y=ax+b $

B) $ y^{2}=ax+b $

C) $ y=\log x $

D) $ y=e^{x}+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{d^{2}y}{dx^{2}}=0 $

Therefore $ \frac{d}{dx}( \frac{dy}{dx} )=0 $ …..(i)

Integrating (i) with respect to x,

$ \frac{dy}{dx}=a $ ……..(ii)

where a is an arbitrary constant

Again integrating (ii) with respect to x

$ \int{\frac{dy}{dx}dx}=\int{adx+b} $ or $ y=ax+b $ , where b is another arbitrary constant.