Differential Equations Question 174
Question: If $ \frac{d^{2}y}{dx^{2}}=0, $ then
[UPSEAT 1999]
Options:
A) $ y=ax+b $
B) $ y^{2}=ax+b $
C) $ y=\log x $
D) $ y=e^{x}+c $
Show Answer
Answer:
Correct Answer: A
Solution:
$ \frac{d^{2}y}{dx^{2}}=0 $
Therefore $ \frac{d}{dx}( \frac{dy}{dx} )=0 $ …..(i)
Integrating (i) with respect to x,
$ \frac{dy}{dx}=a $ ……..(ii)
where a is an arbitrary constant
Again integrating (ii) with respect to x
$ \int{\frac{dy}{dx}dx}=\int{adx+b} $ or $ y=ax+b $ , where b is another arbitrary constant.