Differential Equations Question 176

Question: A function $ y=f(x) $ has a second order derivatives $ {{f}’}’(x)=6(x-1) $ . If its graph passes through the point (2, 1) and at that point the tangent to the graph is $ y=3x-5 $ , then the function is

[AIEEE 2004]

Options:

A) $ {{(x+1)}^{3}} $

B) $ {{(x-1)}^{3}} $

C) $ {{(x+1)}^{2}} $

D) $ {{(x-1)}^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

Given $ {{f}’}’(x)=6(x-1) $

$ {f}’(x)=3{{(x-1)}^{2}}+c_1 $

……..(i) But at point (2, 1) the line $ y=3x-5 $ is tangent to the graph $ y=f(x) $ . Hence $ {{. \frac{dy}{dx} |} _{x=2}}=3 $ or $ {f}’(2)=3 $ . Then from (i) $ {f}’(2)=3{{(2-1)}^{2}}+c_1 $

$ 3=3+c_1 $

Therefore $ c_1=0 $ i.e., $ {f}’(x)=3{{(x-1)}^{2}} $

Given $ f(2)=1 $

$ f(x)={{(x-1)}^{3}}+c_2 $

Therefore $ f(2)=1+c_2 $

Therefore $ 1=1+c_2 $

Therefore $ c_2=0 $

Hence $ f(x)={{(x-1)}^{3}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें