Differential Equations Question 177
Question: If $ \frac{d^{2}y}{dx^{2}}+\sin x=0, $ then solution of the differential equation is.
[Pb. CET 2001]
Options:
A) $ \sin x+c_1x+c_2 $
B) $ \cos x+c_1x+c_2 $
C) $ \tan x+c_1x+c_2 $
D) $ \log \sin x+c_1x+c_2 $
Show Answer
Answer:
Correct Answer: A
Solution:
We have, $ \frac{d^{2}y}{dx^{2}}+\sin x=0 $ or $ \frac{d^{2}y}{dx^{2}}=-\sin x $
On integrating, $ \frac{dy}{dx}=-(-\cos x)+c_1 $ = $ \cos x+c_1 $
Again integrate, we get $ y=\sin x+c_1x+c_2 $ .