Differential Equations Question 177

Question: If $ \frac{d^{2}y}{dx^{2}}+\sin x=0, $ then solution of the differential equation is.

[Pb. CET 2001]

Options:

A) $ \sin x+c_1x+c_2 $

B) $ \cos x+c_1x+c_2 $

C) $ \tan x+c_1x+c_2 $

D) $ \log \sin x+c_1x+c_2 $

Show Answer

Answer:

Correct Answer: A

Solution:

We have, $ \frac{d^{2}y}{dx^{2}}+\sin x=0 $ or $ \frac{d^{2}y}{dx^{2}}=-\sin x $

On integrating, $ \frac{dy}{dx}=-(-\cos x)+c_1 $ = $ \cos x+c_1 $

Again integrate, we get $ y=\sin x+c_1x+c_2 $ .