Differential Equations Question 178

Question: The solution of the equation $ \frac{d^{2}y}{dx^{2}}={e^{-2x}} $ is

[AIEEE 2002]

Options:

A) $ \frac{1}{4}{e^{-2x}} $

B) $ \frac{1}{4}{e^{-2x}}+cx+d $

C) $ \frac{1}{4}{e^{-2x}}+cx^{2}+d $

D) $ \frac{1}{4}{e^{-2x}}+c+d $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{d^{2}y}{dx^{2}}={e^{-2x}} $

Integrating both sides, we get $ \frac{dy}{dx}=\frac{{e^{-2x}}}{-2}+c $

Again integrate, we get $ y=\frac{{e^{-2x}}}{4}+cx+d $ .