Differential Equations Question 178
Question: The solution of the equation $ \frac{d^{2}y}{dx^{2}}={e^{-2x}} $ is
[AIEEE 2002]
Options:
A) $ \frac{1}{4}{e^{-2x}} $
B) $ \frac{1}{4}{e^{-2x}}+cx+d $
C) $ \frac{1}{4}{e^{-2x}}+cx^{2}+d $
D) $ \frac{1}{4}{e^{-2x}}+c+d $
Show Answer
Answer:
Correct Answer: B
Solution:
$ \frac{d^{2}y}{dx^{2}}={e^{-2x}} $
Integrating both sides, we get $ \frac{dy}{dx}=\frac{{e^{-2x}}}{-2}+c $
Again integrate, we get $ y=\frac{{e^{-2x}}}{4}+cx+d $ .