Differential Equations Question 188

Question: The slope of the tangent at (x, y) to a curve passing through $ ( 1,\frac{\pi }{4} ) $ is given by $ \frac{y}{x}-{{\cos }^{2}}( \frac{y}{x} ) $ , then the equation of

Options:

A) $ y={{\tan }^{-1}}( \log ( \frac{e}{x} ) ) $

B) $ y=x{{\tan }^{-1}}( \log ( \frac{x}{e} ) ) $

C) $ y=x{{\tan }^{-1}}( \log ( \frac{e}{x} ) ) $

D) None of thee

Show Answer

Answer:

Correct Answer: C

Solution:

[c] we have $ \frac{dy}{dx}=\frac{y}{x}-{{\cos }^{2}}( \frac{y}{x} ) $ Putting $ y=vx $ So that $ \frac{dy}{dx}=v+x\frac{dv}{dx}, $ we get $ v+x\frac{dv}{dx}=v-{{\cos }^{2}}v $ Or $ \frac{dv}{{{\cos }^{2}}v}=-\frac{dx}{x} $ Or $ {{\sec }^{2}}udu=-\frac{1}{x}dx $

On integration, we get $ \tan u=-\log x+\log C $ Or $ \tan ( \frac{y}{x} )=-\log x+\log C $ This passes through $ (1,\pi /4). $ Therefore, $ 1=\log C. $ So, $ \tan ( \frac{y}{x} )=-\log x+1 $

$ =-\log x+{\log _{e}} $ Or $ y=x{{\tan }^{-1}}( \log ( \frac{e}{x} ) ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें