Differential Equations Question 192

Question: The solution of $ \frac{dy}{dx}=\frac{x^{2}+y^{2}+1}{2xy} $ satisfying y(1)=1 is given by

Options:

A) a system of parabolas

B) a system of circles

C) $ y^{2}=x(1+x)-1 $

D) $ {{(x-2)}^{2}}+{{(y-3)}^{2}}=5 $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Rewriting the given equation as $ 2xy\frac{dy}{dx}-y^{2}=1+x^{2} $

Or $ 2y\frac{dy}{dx}-\frac{1}{x}y^{2}=\frac{1}{x}+x $ Putting $ y^{2}=u, $

we have $ \frac{du}{dx}-\frac{1}{x}u=\frac{1}{x}+x $ I.F. $ ={e^{-\int{\frac{1}{x}dx}}}=\frac{1}{x} $

Thus, solution is u $ \frac{1}{x}=\int{( \frac{1}{x^{2}}+1 )}dx=-\frac{1}{x}+x+C $ Or $ y^{2}=(x^{2}-1)+Cx $

Since y(1) =1, we get C=1. Hence, $ y^{2}=x(1+x)-1 $ which represents a systems of hyperbola.