Differential Equations Question 192

Question: The solution of $ \frac{dy}{dx}=\frac{x^{2}+y^{2}+1}{2xy} $ satisfying y(1)=1 is given by

Options:

A) a system of parabolas

B) a system of circles

C) $ y^{2}=x(1+x)-1 $

D) $ {{(x-2)}^{2}}+{{(y-3)}^{2}}=5 $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Rewriting the given equation as $ 2xy\frac{dy}{dx}-y^{2}=1+x^{2} $

Or $ 2y\frac{dy}{dx}-\frac{1}{x}y^{2}=\frac{1}{x}+x $ Putting $ y^{2}=u, $

we have $ \frac{du}{dx}-\frac{1}{x}u=\frac{1}{x}+x $ I.F. $ ={e^{-\int{\frac{1}{x}dx}}}=\frac{1}{x} $

Thus, solution is u $ \frac{1}{x}=\int{( \frac{1}{x^{2}}+1 )}dx=-\frac{1}{x}+x+C $ Or $ y^{2}=(x^{2}-1)+Cx $

Since y(1) =1, we get C=1. Hence, $ y^{2}=x(1+x)-1 $ which represents a systems of hyperbola.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें