Differential Equations Question 21

Question: The solution of the differential equation $ xy\frac{dy}{dx}=\frac{(1+y^{2})(1+x+x^{2})}{(1+x^{2})} $ is

[AISSE 1983]

Options:

A) $ \frac{1}{2}\log (1+y^{2})=\log x-{{\tan }^{-1}}x+c $

B) $ \frac{1}{2}\log (1+y^{2})=\log x+{{\tan }^{-1}}x+c $

C) $ \log (1+y^{2})=\log x-{{\tan }^{-1}}x+c $

D) $ \log (1+y^{2})=\log x+{{\tan }^{-1}}x+c $

Show Answer

Answer:

Correct Answer: B

Solution:

$ xy\frac{dy}{dx}=\frac{(1+y^{2})(1+x+x^{2})}{(1+x^{2})} $

Therefore $ \int _{{}}^{{}}{\frac{ydy}{1+y^{2}}=\int _{{}}^{{}}{\frac{(1+x+x^{2})}{x(1+x^{2})}}}dx=\int _{{}}^{{}}{\frac{1}{x}dx}+\int _{{}}^{{}}{\frac{dx}{1+x^{2}}} $

Therefore $ \frac{1}{2}\log (1+y^{2})=\log x+{{\tan }^{-1}}x+c $ .