Differential Equations Question 212

Question: Solution of differential equation $ x\frac{dy}{dx}=y+{x^{^{2}}} $ is

[MP PET 1997]

Options:

A) $ y={\log _{e}}x+\frac{x^{2}}{2}+a $

B) $ y=\frac{x^{3}}{3}+\frac{a}{x} $

C) $ y=x^{2}+ax $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{dy}{dx}-\frac{y}{x}=x $ ; I.F. $ ={e^{\int _{{}}^{{}}{-\frac{1}{x}dx}}}=\frac{1}{x} $

$ \therefore $ Solution is $ y\cdot \frac{1}{x}=\int _{{}}^{{}}{x\cdot \frac{1}{x}dx} $

Therefore $ \frac{y}{x}=x+a $

Therefore $ y=x^{2}+ax $ .