Differential Equations Question 214

Question: The solution of the equation $ x\frac{dy}{dx}+3y=x $ is

Options:

A) $ x^{3}y+\frac{x^{4}}{4}+c=0 $

B) $ x^{3}y=\frac{x^{4}}{4}+c $

C) $ x^{3}y+\frac{x^{4}}{4}=0 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ x\frac{dy}{dx}+3y=x $

Therefore $ \frac{dy}{dx}+\frac{3y}{x}=1 $

It is in the form of $ \frac{dy}{dx}+Py=Q $

So, I.F. $ ={e^{\int _{{}}^{{}}{Pdx}}}=e^{3^{\int _{{}}^{{}}{\frac{1}{x}dx}}}={e^{3\log x}}=x^{3} $

Hence required solution is $ y+x^{2}+2x+2=ce^{x} $

Therefore $ yx^{3}=\frac{x^{4}}{4}+c $ .