Differential Equations Question 22

Question: The solution of $ (x\sqrt{1+y^{2}})dx+(y\sqrt{1+x^{2}})dy=0 $ is

Options:

A) $ \sqrt{1+x^{2}}+\sqrt{1+y^{2}}=c $

B) $ \sqrt{1+x^{2}}-\sqrt{1+y^{2}}=c $

C) $ {{(1+x^{2})}^{3/2}}+{{(1+y^{2})}^{3/2}}=c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Given equation is, $ (x\sqrt{1+y^{2}})dx+(y\sqrt{1+x^{2}})dy=0 $

Therefore $ x\sqrt{1+y^{2}}dx=-y\sqrt{1+x^{2}}dy $

Therefore $ \int _{{}}^{{}}{\frac{x}{\sqrt{1+x^{2}}}dx+}\int _{{}}^{{}}{\frac{y}{\sqrt{1+y^{2}}}dy=c} $

Therefore $ \sqrt{1+x^{2}}+\sqrt{1+y^{2}}=c $ .