Differential Equations Question 220

Question: The differential equation of the family of curves for which the length of the normal is equal to a constant k, is given by

[Pb. CET 2004]

Options:

A) $ y^{2}\frac{dy}{dx}=k^{2}-y^{2} $

B) $ {{( y\frac{dy}{dx} )}^{2}}=k^{2}-y^{2} $

C) $ y{{( \frac{dy}{dx} )}^{2}}=k^{2}+y^{2} $

D) $ {{( y\frac{dy}{dx} )}^{2}}=k^{2}+y^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

The length of normal is given by, $ y\sqrt{1+{{( \frac{dy}{dx} )}^{2}}} $

$ \therefore $ $ y\sqrt{1+{{( \frac{dy}{dx} )}^{2}}}=k $

Therefore $ y^{2}[ 1+{{( \frac{dy}{dx} )}^{2}} ]=k^{2} $

Therefore $ y^{2}+y^{2}{{( \frac{dy}{dx} )}^{2}}=k^{2} $

Therefore $ y^{2}{{( \frac{dy}{dx} )}^{2}}=k^{2}-y^{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें