Differential Equations Question 220

Question: The differential equation of the family of curves for which the length of the normal is equal to a constant k, is given by

[Pb. CET 2004]

Options:

A) $ y^{2}\frac{dy}{dx}=k^{2}-y^{2} $

B) $ {{( y\frac{dy}{dx} )}^{2}}=k^{2}-y^{2} $

C) $ y{{( \frac{dy}{dx} )}^{2}}=k^{2}+y^{2} $

D) $ {{( y\frac{dy}{dx} )}^{2}}=k^{2}+y^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

The length of normal is given by, $ y\sqrt{1+{{( \frac{dy}{dx} )}^{2}}} $

$ \therefore $ $ y\sqrt{1+{{( \frac{dy}{dx} )}^{2}}}=k $

Therefore $ y^{2}[ 1+{{( \frac{dy}{dx} )}^{2}} ]=k^{2} $

Therefore $ y^{2}+y^{2}{{( \frac{dy}{dx} )}^{2}}=k^{2} $

Therefore $ y^{2}{{( \frac{dy}{dx} )}^{2}}=k^{2}-y^{2} $ .