Differential Equations Question 223

Question: If $ \phi (x) $ is a differentiable function, then the solution of the differential equation $ dy+{y\phi ‘(x)-\phi (x)\phi ‘(x)}dx=0 $ is

Options:

A) $ y={\phi (x)-1}+c{e^{-\phi (x)}} $

B) $ y\phi (x)={{{\phi (x)}}^{2}}+c $

C) $ y{e^{\phi (x)}}=\phi (x){e^{\phi (x)}}+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] We have, $ dy+{y\phi ‘(x)-\phi (x)\phi ‘(x)}dx=0 $

$ \Rightarrow \frac{dy}{dx}+\phi ‘(x)\cdot y=\phi (x)\phi ‘(x) $

  • (i) This is linear differential equation with I.F $ ={e^{\int{\phi ‘(x)dx}}}={e^{\phi (x)}} $ Multiplying Eq. (i) by $ \phi (x) $ and integrating, we get $ y{e^{\phi (x)}}=\int{\phi (x)\phi ‘(x){e^{\phi (x)}}}dx $

$ \Rightarrow y{e^{\phi (x)}}=\int{{e^{\phi (x)}}\phi (x)\phi ‘(x)}dx $

$ \Rightarrow y{e^{\phi (x)}}=\int{\phi (x){e^{\phi (x)}}}\phi ‘(x)dx $

$ \Rightarrow y{e^{\phi (x)}}=\phi (x){e^{\phi (x)}}-\int{\phi ‘(x){e^{\phi (x)}}}dx $

$ \Rightarrow y{e^{\phi (x)}}=\phi (x){e^{\phi (x)}}-{e^{\phi (x)}}+c $

$ \Rightarrow y={\phi (x)-1}+c{e^{-\phi (x)}} $