Differential Equations Question 232

Question: A differential equation associated with the primitive $ y=a+be^{5x}+c{e^{-~7x}} $ is

Options:

A) $ y_3+2y_2-y_1=0 $

B) $ y_3+2y_2-35y_1=0 $

C) $ 4y_3+5y_2-20y_1=0 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ y=a+be^{5x}+c{e^{-7x}} $

  • (i)
    $ \therefore $ $ y_1=0+5be^{5x}-7c{e^{-7x}} $

Dividing by $ ye^{5x} $ , we get: $ {e^{-5x}}y_1=5b-7c{e^{-12x}} $ Again differentiating both sides w.r.t.x, we get $ {e^{-5x}}.y_2+y_1(-5){e^{-5x}}=0+84c{e^{-12x}} $

Dividing by $ {e^{-12x}} $ . We get: $ e^{7x}(y_2-5y_1)=84c $ Differentiating both sides w.r.t.x, we get $ e^{7x}(y_3-5y_2)+(y_2-5y_1).7e^{7x}=0 $

$ \Rightarrow y_3+2y_2-35y_1=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें