Differential Equations Question 234

Question: The solution of the differential equation $ y-x\frac{dy}{dx}=a( y^{2}+\frac{dy}{dx} ) $ is

[AISSE 1989, 90]

Options:

A) $ y=c(x+a)(1+ay) $

B) $ y=c(x+a)(1-ay) $

C) $ y=c(x-a)(1+ay) $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ y-x\frac{dy}{dx}=a( y^{2}+\frac{dy}{dx} ) $

Therefore $ y-ay^{2}=(x+a)\frac{dy}{dx} $

Therefore $ \frac{dy}{y(1-ay)}=\frac{dx}{x+a} $

On integrating both sides, we get

Therefore $ \log y-\log (1-ay)=\log (x+a)+\log c $

Therefore $ \frac{y}{(1-ay)}=c(x+a) $ or $ c(x+a)(1-ay)=y $ .