Differential Equations Question 236

Question: What is the order of the differential equation $ \frac{dx}{dy}+\int{ydx=x^{3}} $ -

Options:

A) 1

B) 2

C) 3

D) Cannot be determined

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ \frac{dx}{dy}+\int{y.dx=x^{3}\Rightarrow \int{y.dx=x^{3}-\frac{dx}{dy}}} $

$ \Rightarrow 1+\frac{dy}{dx}( \int{y.dx} )=x^{3}.\frac{dy}{dx} $ Differentiate both sides w.e.t.x

$ \Rightarrow 0+\frac{dy}{dx}(y)+( \int{y.dx} )( \frac{d^{2}y}{dx^{2}} )=x^{3}.\frac{d^{2}y}{dx^{2}}+\frac{dy}{dx}(2x^{2}) $
$ \Rightarrow y.\frac{dy}{dx}+\frac{d^{2}y}{dx^{2}}[ x^{3}-\frac{dx}{dy} ]=x^{3}.\frac{d^{2}y}{dx^{2}}+2x^{2}\frac{dy}{dx} $

$ \Rightarrow y\frac{dy}{dx}+x^{3}\frac{d^{2}y}{dx^{2}}-( \frac{dx}{dy} )( \frac{d^{2}y}{dx^{2}} )=x^{3}\frac{d^{2}y}{dx^{2}}+2x^{2}\frac{dy}{dx} $
$ \Rightarrow y\frac{dy}{dx}-\frac{dx}{dy}.\frac{d^{2}y}{dx^{2}}=2x^{2}.\frac{dy}{dx} $ Multiplying both side by $ \frac{dy}{dx} $ $ y{{( \frac{dy}{dx} )}^{2}}-\frac{d^{2}y}{dx^{2}}=2x^{2}{{( \frac{dy}{dx} )}^{2}} $

$ \Rightarrow \frac{d^{2}y}{dx^{2}}+(2x^{2}-y){{( \frac{dy}{dx} )}^{2}}=0 $ Order = 2, degree = 1.