Differential Equations Question 238

Question: If $ y^{2}=p(x) $ is a polynomial of degree 3, then what is $ 2\frac{d}{dx}[ y^{3}\frac{d^{2}y}{dx^{2}} ] $ equal to-

Options:

A) p’(x)p"’(x)

B) p"(x)p’"(x)

C) p(x)p"’(x)

D) A constant

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Given that $ y^{2}=p(x) $ Differentiating

$ \Rightarrow 2yy_1=p’(x) $

$ [ herey_1=\frac{dy}{dx} ] $

$ \Rightarrow 2y_1=\frac{p’(x)}{y} $ Differentiating again,

$ \Rightarrow 2y_2=\frac{yp’’(x)-p’(x)y_1}{y^{2}},[ y_2=\frac{d^{2}y}{dx^{2}} ] $

$ \Rightarrow 2y_2=\frac{yp’’(x)-\frac{p’(x).p’(x)}{2y}}{y^{2}} $ $ =\frac{2y^{2}p’’(x)-p’(x){{)}^{2}}}{2y^{3}} $

$ \Rightarrow 2y^{3}y_2=\frac{1}{2}[2y^{2}p’’(x)-{{(p’(x))}^{2}}] $

$ \Rightarrow 2y^{3}y_2=\frac{1}{2}[2p(x)p’’(x)-{{(p’(x))}^{2}}] $

$ \Rightarrow 2\frac{d}{dx}(y^{3}y_2) $ $ =\frac{1}{2}[2p’(x)p’’(x)+2p(x)p’’’(x)-2p’(x)p’’(x)] $ $ =p(x)p’’’(x) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें