Differential Equations Question 24

Question: A curve passing through (2, 3) and satisfying the differential equation $ \int_0^{x}{ty(t)dt=x^{2}y(x),(x>0)} $ is

Options:

A) $ x^{2}+y^{2}=13 $

B) $ y^{2}=\frac{9}{2}x $

C) $ \frac{x^{2}}{8}+\frac{y^{2}}{18}=1 $

D) $ xy=c $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Differentiate $ xy(x)=x^{2}y’(x)+2xy(x) $ or $ xy(x)+x^{2}y’(x)=0 $ or $ x\frac{dy}{dx}+y=0 $ or $ lny+lnx=lnc $

or $ xy=c $