Differential Equations Question 241

Question: A continuously differentiable function $ \phi (x) $ , $ x\in [0,\pi ]-{ \frac{\pi }{2} } $ satisfying $ y’=1+y^{2},y(0)=0=y(\pi ) $ is

Options:

A) $ \tan x $

B) $ x(x-\pi ) $

C) $ (x-\pi )(1-e^{x}) $

D) $ {{\sec }^{2}}x $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Given $ \frac{dy}{dx}=1+y^{2} $
$ \Rightarrow \frac{dy}{1+y^{2}}=dx\Rightarrow {{\tan }^{-1}}y=x+c $
$ \Rightarrow y=\tan (x+c) $ , now $ y(0)=0\Rightarrow tanc=0 $

$ y(\pi )=0\Rightarrow tan(\pi +c)=0\Rightarrow c=n\pi $
$ \therefore y=\tan x $