Differential Equations Question 245

Question: The general solution of the differential equation $ \frac{d^{2}y}{dx^{2}}=\cos nx $ is

Options:

A) $ n^{2}y+\cos nx=n^{2}(Cx+D) $

B) $ n^{2}y-sinnx=n^{2}(-Cx+D) $

C) $ n^{2}y+\cos nx=\frac{Cx+D}{n^{2}} $

D) None of these. [Where C and D are arbitrary constants]

Show Answer

Answer:

Correct Answer: A

Solution:

[a] The differential equation is $ \frac{d^{2}y}{dx^{2}}=\cos nx $ Integrating we get $ \frac{dy}{dx}=\frac{\sin nx}{n}+C $

  • (i) Integrating again $ y=-\frac{\cos nx}{n^{2}}+Cx+D $
    $ \Rightarrow n^{2}y+\cos nx=n^{2}(Cx+D) $