Differential Equations Question 248

Question: The solution of the differential equation $ \sqrt{a+x}\frac{dy}{dx}+xy=0 $ is

[MP PET 1998]

Options:

A) $ y=A{e^{2/3(2a-x)\sqrt{x+a}}} $

B) $ y=A{e^{-2/3(a-x)\sqrt{x+a}}} $

C) $ y=A{e^{2/3(2a+x)\sqrt{x+a}}} $

D) $ y=A{e^{-2/3(2a-x)\sqrt{x+a}}} $ (Where A is an arbitrary constant.)

Show Answer

Answer:

Correct Answer: A

Solution:

Given $ \frac{dy}{dx}+\frac{xy}{\sqrt{a+x}}=0 $

Therefore $ \frac{dy}{y}=\frac{-xdx}{\sqrt{a+x}} $
Integrating both sides, $ \int{\frac{dy}{y}}=\int{\frac{-x}{\sqrt{x+a}}dx} $
$ \log y=-\int _{{}}^{{}}{\frac{x+a-a}{\sqrt{x+a}}}dx $

$ =-\int _{{}}^{{}}{\sqrt{x+a}}dx+\int _{{}}^{{}}{\frac{a}{\sqrt{x+a}}}dx $

Therefore $ \log y=-\frac{2}{3}{{(x+a)}^{3/2}}+2a\sqrt{x+a}+\log A $

$ y=A{e^{-2/3{{(x+a)}^{3/2}}+2a\sqrt{x+a}}} $

$ =A{e^{[ (\sqrt{x+a}( -\frac{2}{3}(x+a)+2a ) ]}} $

$ =A{e^{[ \sqrt{x+a}( \frac{-2x-2a+6a}{3} ) ]}} $

$ =A{e^{[-2/3\sqrt{x+a}(x-2a)]}} $

or $ y=A{e^{[2/3\sqrt{x+a}(2a-x)]}} $ .