Differential Equations Question 251

Question: Solution of differential equation $ \frac{dy}{dx}+ay=e^{mx} $ is

[MP PET 1996]

Options:

A) $ (a+m)y=e^{mx}+c $

B) $ ye^{ax}=me^{mx}+c $

C) $ y=e^{mx}+c{e^{-ax}} $

D) $ (a+m)y=e^{mx}+c{e^{-ax}}(a+m) $

Show Answer

Answer:

Correct Answer: D

Solution:

I.F. $ ={e^{\int _{{}}^{{}}{adx}}}=e^{ax} $

$ \therefore $ Required solution is given by $ y.e^{ax}=\int _{{}}^{{}}{e^{mx}.e^{ax}}dx=\frac{{e^{(a+m)x}}}{a+m}+C $

Therefore $ y=\frac{e^{mx}}{a+m}+C{e^{-ax}} $

Therefore $ y(a+m)=e^{mx}+C(a+m){e^{-ax}} $ .