Differential Equations Question 252

Question: If $ y=e^{4x}+2{e^{-x}} $ satisfies the relation $ \frac{d^{3}y}{dx^{3}}+A\frac{dy}{dx}+By=0, $ then values of A and B respectively are:

Options:

A) -13, 14

B) -13, -12

C) -13, 12

D) 12, -13

Show Answer

Answer:

Correct Answer: B

Solution:

Given $ y=e^{4x}+2{e^{-x}} $ Differentiating we get $ \frac{dy}{dx}=4e^{4x}-2{e^{-x}}\Rightarrow \frac{d^{2}y}{dx^{2}}=16e^{4x}+2{e^{-x}} $ $ \Rightarrow \frac{d^{3}y}{dx^{3}}=64e^{4x}-2{e^{-x}} $ Putting these values in $ \frac{d^{3}y}{dx^{3}}+A\frac{dy}{dx}+By=0 $ We have, $ (64+4A+B)e^{4x}+(-2-2A+2B){e^{-x}}=0 $
$ \Rightarrow 64+4A+B=0,-2-2A+2B=0 $ Solving these eqs. we get $ A=-13,B=-12 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें