Differential Equations Question 254

Question: Solution of the differential equation $ x=1+xy\frac{dy}{dx}+\frac{x^{2}y^{2}}{2!}{{( \frac{dy}{dx} )}^{2}}+ $

$ \frac{x^{3}y^{3}}{3!}{{( \frac{dy}{dx} )}^{3}}+………… $

Options:

A) $ y=ln(x)+c $

B) $ y={{(lnx)}^{2}}+c $

C) $ y=\pm ln(x)+c $

D) $ xy=x^{y}+c $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] The given equation is reduced to $ x={e^{xy(dy/dx)}} $
$ \Rightarrow \ell nx=xy\frac{dy}{dx}\Rightarrow \int{ydy=\int{\frac{1}{x}\ell nxdx}} $
$ \Rightarrow \frac{y^{2}}{2}=\frac{{{(\ell nx)}^{2}}}{2}+c $
$ \Rightarrow y=\pm \sqrt{{{(\ell nx)}^{2}}}+c=\pm \ell nx+c $