Differential Equations Question 26

Question: The solution of the equation $ \frac{dy}{dx}={{(x+y)}^{2}} $ is

Options:

A) $ x+y+\tan (x+c)=0 $

B) $ x-y+\tan (x+c)=0 $

C) $ x+y-\tan (x+c)=0 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Put $ x+y=v $ and $ 1+\frac{dy}{dx}=\frac{dv}{dx} $

Therefore $ \frac{dv}{dx}=v^{2}+1 $

Therefore $ \frac{dv}{v^{2}+1}=dx $

On integrating, we get $ {{\tan }^{-1}}v=x+c $ or $ v=\tan (x+c) $

Therefore $ x+y=\tan (x+c) $ .