Differential Equations Question 260

Question: An integrating factor of the differential equation $ \sin x\frac{dy}{dx}+2y\cos x=1 $ is

Options:

A) $ {{\sin }^{2}}x $

B) $ \frac{2}{\sin x} $

C) $ \log | \sin x | $

D) $ \frac{1}{{{\sin }^{2}}x} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Given differential equation is $ \sin x\frac{dy}{dx}+2y\cos x=1;\Rightarrow \frac{dy}{dx}+2y\frac{\cos x}{\sin x}=\frac{1}{\sin x} $
$ \Rightarrow \frac{dy}{dx}+(2cotx)y=cosecx $ I.F. $ ={e^{\int{2\cot xdx}}}={e^{\int{2( \frac{\cos x}{\sin x} )dx}}}={e^{2\log \sin x}} $

$ ={e^{{\log _{e}}{{(sinx)}^{2}}}}={{(sinx)}^{2}} $