Differential Equations Question 262

Question: The solution of the differential equation $ x\frac{dy}{dx}=y(\log y-\log x+1) $ is

[IIT 1986; AIEEE 2005]

Options:

A) $ y=xe^{cx} $

B) $ y+xe^{cx}=0 $

C) $ y+e^{x}=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Here $ \frac{dy}{dx}=\frac{y}{x}( \log \frac{y}{x}+1 ) $

…..(i)
It is homogeneous equation
So now put

and $ \frac{dy}{dx}=v+x\frac{dv}{dx} $ , then the equation (i) reduces to $ \frac{dv}{v\log v}=\frac{dx}{x} $

On integrating, we get $ \log (\log v)=\log x+\log c $

Therefore $ \log ( \frac{y}{x} )=cx $

Therefore $ y=xe^{cx} $ .