Differential Equations Question 27

Question: The solution of the differential equation $ \cos y\log (\sec x+\tan x)dx=\cos x\log (\sec y+\tan y)dy $ is

[AI CBSE 1990]

Options:

A) $ {{\sec }^{2}}x+{{\sec }^{2}}y=c $

B) $ \sec x+\sec y=c $

C) $ \sec x-\sec y=c $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

$ \cos y\log (\sec x+\tan x)dx=\cos x\log (\sec y+\tan y)dy $

Therefore $ \int _{{}}^{{}}{\sec y\log (\sec y+\tan y)dy} $

$ =\int _{{}}^{{}}{\sec x\log (\sec x+\tan x)dx} $

Put $ \log (\sec x+\tan x)=t $ and $ \log (\sec y+\tan y)=z $

$ \frac{{{[\log (\sec x+\tan x)]}^{2}}}{2}=\frac{{{[\log (\sec y+\tan y)]}^{2}}}{2}+c $ .