Differential Equations Question 273

Question: The function $ f(\theta )=\frac{d}{d\theta }\int\limits_0^{\theta }{\frac{dx}{1-\cos \theta \cos x}} $ satisfies the differential equation

Options:

A) $ \frac{df}{d\theta }+2f(\theta )cot\theta =0 $

B) $ \frac{df}{d\theta }-2f(\theta )cot\theta =0 $

C) $ \frac{df}{d\theta }+2f(\theta )=0 $

D) $ \frac{df}{d\theta }-2f(\theta )=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] we have $ f(\theta )=\frac{d}{d\theta }\int\limits_0^{\theta }{\frac{dx}{1-\cos \theta \cos x}} $

$ =\frac{1}{1-{{\cos }^{2}}\theta }=\cos ec^{2}\theta $ (using Leibnitz’s Rule)
$ \Rightarrow \frac{df(\theta )}{d\theta }=-2\cos ec^{2}\theta \cot \theta $
$ \Rightarrow \frac{df(\theta )}{d\theta }+2f(\theta )cot\theta =0 $