Differential Equations Question 273

Question: The function $ f(\theta )=\frac{d}{d\theta }\int\limits_0^{\theta }{\frac{dx}{1-\cos \theta \cos x}} $ satisfies the differential equation

Options:

A) $ \frac{df}{d\theta }+2f(\theta )cot\theta =0 $

B) $ \frac{df}{d\theta }-2f(\theta )cot\theta =0 $

C) $ \frac{df}{d\theta }+2f(\theta )=0 $

D) $ \frac{df}{d\theta }-2f(\theta )=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] we have $ f(\theta )=\frac{d}{d\theta }\int\limits_0^{\theta }{\frac{dx}{1-\cos \theta \cos x}} $

$ =\frac{1}{1-{{\cos }^{2}}\theta }=\cos ec^{2}\theta $ (using Leibnitz’s Rule)
$ \Rightarrow \frac{df(\theta )}{d\theta }=-2\cos ec^{2}\theta \cot \theta $
$ \Rightarrow \frac{df(\theta )}{d\theta }+2f(\theta )cot\theta =0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें