Differential Equations Question 274

Question: The equation of the curve passing through the point $ ( 0,\frac{\pi }{4} ) $ whose differential equation is $ sinxcosydx+cosxsinydy=0 $ , is

Options:

A) $ secxsecy=\sqrt{2} $

B) $ cosxcosy=\sqrt{2} $

C) $ \sec x=\sqrt{2}\cos y $

D) $ cosy=\sqrt{2}\sec y $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] The given differential equation is $ \sin x\cos ydx+\cos x\sin ydy=0 $

dividing by $ \cos x\cos y\Rightarrow \frac{\sin x}{\cos x}dx+\frac{\sin y}{\cos y}dy=0 $ Integrating, $ \int{\tan xdx+\int{\tan ydy=\log c}} $

Or $ \log \sec x\sec y=\log cor\sec x\sec y=c $ curve passes through the point $ ( 0,\frac{\pi }{4} ) $

$ \sec 0\sec \frac{\pi }{4}=c=\sqrt{2} $ Hence. The required equation of the curve is $ \sec x\sec y=\sqrt{2} $