Differential Equations Question 276

Question: The solution of the differential equation $ \frac{dy}{dx}=\frac{y}{x}+\frac{\varphi ( \frac{y}{x} )}{{\varphi }’( \frac{y}{x} )} $ is

[DCE 2002]

Options:

A) $ \varphi ( \frac{y}{x} )=kx $

B) $ x\varphi ( \frac{y}{x} )=k $

C) $ \varphi ( \frac{y}{x} )=ky $

D) $ y\varphi ( \frac{y}{x} )=k $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{dy}{dx}=\frac{y}{x}+\frac{\varphi ( \frac{y}{x} )}{{\varphi }’( \frac{y}{x} )} $ . Put $ y=vx $

Therefore $ \frac{dy}{dx}=v+x\frac{dv}{dx} $

\ The given differential equation becomes
$ v+x\frac{dv}{dx}=v+\frac{\varphi (v)}{{\varphi }’(v)} $

Therefore $ \frac{{\varphi }’(v)}{\varphi (v)}dv=\frac{dx}{x} $

Therefore $ \log \varphi (v)=\log x+\log k $

Therefore $ \varphi (v)=kx $

Therefore $ \varphi ( \frac{y}{x} )=kx $ .