Differential Equations Question 279

Question: The solution of the differential equation $ \frac{dy}{dx}+y\cot x=2\cos x $ is

Options:

A) $ y\sin x+\cos 2x=2c $

B) $ 2y\sin x+\cos x=c $

C) $ y\sin x+\cos x=c $

D) $ 2y\sin x+\cos 2x=c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{dy}{dx}+y\cot x=2\cos x $

It is linear equation of the form $ \frac{dy}{dx}+Py=Q $

So, I.F. $ ={e^{\int _{{}}^{{}}{Pdx}}}={e^{\int _{{}}^{{}}{\cot xdx}}}={e^{\log \sin x}}=\sin x $

Hence the solution is $ y\sin x=\int _{{}}^{{}}{2\sin x\cos xdx+c} $

Therefore $ y\sin x=-\frac{1}{2}\cos 2x+c $

Therefore $ 2y\sin x+\cos 2x=c $ .