Differential Equations Question 293

Question: The solution of the differential equation $ x\log x\frac{dy}{dx}+y=2\log x $ is

Options:

A) $ y=\log x+c $

B) $ y=\log x^{2}+c $

C) $ y\log x={{(\log x)}^{2}}+c $

D) $ y=x\log x+c $

Show Answer

Answer:

Correct Answer: C

Solution:

$ x\log x\frac{dy}{dx}+y=2\log x $

Therefore $ \frac{dy}{dx}+\frac{1}{x\log x}y=\frac{2}{x} $

This is linear differential equation in y.
$ \therefore $ I.F. $ ={e^{\int_x^{{}}{\frac{1}{\log x}dx}}}={e^{{\log _{e}}{\log _{e}}x}}=\log x $

Therefore $ y. $ (I.F.) $ =\int _{{}}^{{}}{Q\ .\ (I.F.)dx} $

Therefore $ y\log x=\int _{{}}^{{}}{\frac{2}{x}}.\log xdx $

Therefore $ y\log x={{(\log x)}^{2}}+c $ .