Differential Equations Question 297

Question: A function $ y=f(x) $ satisfies the differential equation $ \frac{dy}{dx}-y=\cos x-\sin x $ with initial condition that y is bounded when $ x\to \infty $ . The area enclosed by $ y=f(x),y=cosx $ and the y-axis is

Options:

A) $ \sqrt{2}-1 $

B) $ \sqrt{2} $

C) 1

D) $ \frac{1}{\sqrt{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] IF $ ={e^{-x}} $
$ \therefore y{e^{-x}}=\int{{e^{-x}}(cosx-sinx)dx} $ Put $ -x=t $

$ =-\int{e^{t}(cost+sint)dt=-e^{t}\sin t+c} $

$ y{e^{-x}}={e^{-x}}\sin x+c $ Since, y is bounded when $ x\to \infty \Rightarrow c=0 $
$ \therefore y=\sin x $ Area $ =\int_0^{\pi /4}{(cosx-sinx)dx=\sqrt{2}}-1 $