Differential Equations Question 297

Question: A function $ y=f(x) $ satisfies the differential equation $ \frac{dy}{dx}-y=\cos x-\sin x $ with initial condition that y is bounded when $ x\to \infty $ . The area enclosed by $ y=f(x),y=cosx $ and the y-axis is

Options:

A) $ \sqrt{2}-1 $

B) $ \sqrt{2} $

C) 1

D) $ \frac{1}{\sqrt{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] IF $ ={e^{-x}} $
$ \therefore y{e^{-x}}=\int{{e^{-x}}(cosx-sinx)dx} $ Put $ -x=t $

$ =-\int{e^{t}(cost+sint)dt=-e^{t}\sin t+c} $

$ y{e^{-x}}={e^{-x}}\sin x+c $ Since, y is bounded when $ x\to \infty \Rightarrow c=0 $
$ \therefore y=\sin x $ Area $ =\int_0^{\pi /4}{(cosx-sinx)dx=\sqrt{2}}-1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें