Differential Equations Question 30

Question: The general solution of the differential equation $ \log ( \frac{dy}{dx} )=x+y $ is

[MP PET 1994; 1995; DSSE 1984]

Options:

A) $ e^{x}+e^{y}=c $

B) $ e^{x}+{e^{-y}}=c $

C) $ {e^{-x}}+e^{y}=c $

D) $ {e^{-x}}+{e^{-y}}=c $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \log ( \frac{dy}{dx} )=x+y $

Therefore $ {e^{x+y}}=\frac{dy}{dx} $

Therefore $ e^{x}e^{y}=\frac{dy}{dx} $

Therefore $ \int _{{}}^{{}}{e^{x}dx}=\int _{{}}^{{}}{\frac{dy}{e^{y}}} $

Therefore $ e^{x}=-{e^{-y}}+c $

Therefore $ e^{x}+{e^{-y}}=c $ .