Differential Equations Question 301

Question: If integrating factor of $ x(1-x^{2})dy+(2x^{2}y-y-ax^{3})dx=0 $ is $ {e^{\int _{{}}^{{}}{Pdx}}}, $ then P is equal to

[MP PET 1999]

Options:

A) $ \frac{2x^{2}-ax^{3}}{x(1-x^{2})} $

B) $ (2x^{2}-1) $

C) $ \frac{2x^{2}-1}{ax^{3}} $

D) $ \frac{(2x^{2}-1)}{x(1-x^{2})} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ x(1-x^{2})dy+(2x^{2}y-y-ax^{3})dx=0 $

$ \frac{dy}{dx}+\frac{(2x^{2}-1)}{x(1-x^{2})}y=\frac{ax^{2}}{(1-x^{2})} $ ,
$ \therefore P=\frac{2x^{2}-1}{x(1-x^{2})} $ .