Differential Equations Question 304

Question: The general solution of $ y^{2}dx+(x^{2}-xy+y^{2})dy=0 $ is

[EAMCET 2003]

Options:

A) $ {{\tan }^{-1}}( \frac{x}{y} )+\log y+c=0 $

B) $ 2{{\tan }^{-1}}( \frac{x}{y} )+\log x+c=0 $

C) $ \log (y+\sqrt{x^{2}+y^{2}})+\log y+c=0 $

D) $ {{\sinh }^{-1}}( \frac{x}{y} )+\log y+c=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{dx}{dy}+\frac{x^{2}-xy+y^{2}}{y^{2}}=0 $

$ \frac{dx}{dy}+{{( \frac{x}{y} )}^{2}}-( \frac{x}{y} )+1=0 $

Put $ v=x/y $

Therefore $ x=vy $

Therefore $ \frac{dx}{dy}=v+y\frac{dv}{dy} $

$ v+y\frac{dv}{dy}+v^{2}-v+1=0 $

Therefore $ \frac{dv}{v^{2}+1}+\frac{dy}{y}=0 $

Therefore $ \int{\frac{dv}{v^{2}+1}+\int{\frac{dy}{y}=0}} $

Therefore $ {{\tan }^{-1}}(v)+\log y+C=0 $

Therefore $ {{\tan }^{-1}}(x/y)+\log y+c=0 $ .