Differential Equations Question 307

Question: The particular solution of the differential equation $ {{\sin }^{-1}}( \frac{d^{2}y}{dx^{2}}-1 )=x $ , where $ y=\frac{dy}{dx}=0 $ when $ x=0 $ , is

Options:

A) $ y=x^{2}+x-\sin x $

B) $ y=\frac{x^{2}}{2}+x-\sin x $

C) $ y=\frac{x^{2}}{2}+\frac{x}{2}-\sin x $

D) $ 2y=x^{2}+x-\sin x $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] The differential equation is $ \frac{d^{2}y}{dx^{2}}=1+\sin x $

……. (i) Integrating we get $ \frac{dy}{dx}=x-\cos x+c $ - (ii) When $ x=0,\frac{dy}{dx}=0\Rightarrow c=1 $
$ \therefore $ Equation (ii) is $ \frac{dy}{dx}=x-\cos x+1 $ Integrating again we get $ y=\frac{x^{2}}{2}-\sin x+x+D $

  • (iii) When $ x=0,y=0\Rightarrow D=0 $
    $ \therefore $ The particular solution is $ y=\frac{x^{2}}{2}+x-sinx $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें