Differential Equations Question 310

Question: The gradient of the curve passing through (4, 0) is given by $ \frac{dy}{dx}-\frac{y}{x}+\frac{5x}{(x+2)(x-3)}=0 $ if the point (5, a) lies on the curve, then the value of a is

Options:

A) $ \frac{67}{12} $

B) $ 5\sin \frac{7}{12} $

C) $ 5\log \frac{7}{12} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] The differential equation is $ \frac{dy}{dx}-\frac{y}{x}=-\frac{5x}{(x+2)(x-3)} $

I.F = $ {e^{\int{( \frac{1}{x} )dx}}}={e^{-lnx}}=\frac{1}{x} $ Solution is $ y( \frac{1}{x} )=\int{( \frac{1}{x} )\times \frac{5x}{(x+2)(x-3)}dx=ln( \frac{x+2}{x-3} )+C} $ It passes through (4, 0), so $ C=-ln6 $

$ \therefore y=xln{ \frac{(x+2)}{6(x-3)} } $ Putting (5, a), we get a = 5 $ \ln ( \frac{7}{12} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें