Differential Equations Question 314

Question: The solution of the differential equation $ \frac{dy}{dx}=\frac{1+y^{2}}{1+x^{2}} $ is

[SCRA 1986]

Options:

A) $ 1+xy+c(y+x)=0 $

B) $ x+y=c(1-xy) $

C) $ y-x=c(1+xy) $

D) $ 1+xy=c(x+y) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{dy}{dx}=\frac{1+y^{2}}{1+x^{2}}\Rightarrow \frac{1}{1+y^{2}}dy=\frac{1}{1+x^{2}}dx $

Now on integrating both sides, we get $ {{\tan }^{-1}}y={{\tan }^{-1}}x+{{\tan }^{-1}}c $

Therefore $ {{\tan }^{-1}}y={{\tan }^{-1}}( \frac{x+c}{1-cx} ) $

Therefore $ y=\frac{x+c}{1-cx} $

Therefore $ y-x=c(1+xy) $ .