Differential Equations Question 315

Question: What is the solution of the differential equation $ \frac{dx}{dy}+\frac{x}{y}-y^{2}=0 $ -

Options:

A) $ xy=x^{4}+c $

B) $ xy=y^{4}+c $

C) $ 4xy=y^{4}+c $

D) $ 3xy=y^{3}+c $ where c is an arbitrary constant.

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ \frac{dx}{dy}+\frac{x}{y}-y^{2}=0;\frac{dx}{dy}+\frac{x}{y}=y^{2} $ This is a linear differential equation of the form $ \frac{dx}{dy}+P_1x=Q_1; $ Here, $ P=\frac{1}{y} $ and $ Q=y^{2} $
$ \therefore $ I.F. $ ={e^{\int{Pdy}}}={e^{\int{\frac{1}{y}dy}}}={e^{\log y}}=y $ So, required solution is $ x\cdot y=\int{y^{2}\cdot ydy+c;xy=\int{y^{3}dy+c}} $

$ xy=\frac{y^{4}}{4}+c;4xy=y^{4}+c $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें