Differential Equations Question 317

Question: The solution of the differential equation $ x\cos ydy=(xe^{x}\log x+e^{x})dx $ is

[DSSE 1988]

Options:

A) $ \sin y=\frac{1}{x}e^{x}+c $

B) $ \sin y+e^{x}\log x+c=0 $

C) $ \sin y=e^{x}\log x+c $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ x\cos ydy=(xe^{x}\log x+e^{x})dx $

Therefore $ \cos ydy=( e^{x}\log x+\frac{e^{x}}{x} )dx $

On integrating, $ \sin y=e^{x}\log x+c $ .