Differential Equations Question 317
Question: The solution of the differential equation $ x\cos ydy=(xe^{x}\log x+e^{x})dx $ is
[DSSE 1988]
Options:
A) $ \sin y=\frac{1}{x}e^{x}+c $
B) $ \sin y+e^{x}\log x+c=0 $
C) $ \sin y=e^{x}\log x+c $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ x\cos ydy=(xe^{x}\log x+e^{x})dx $
Therefore $ \cos ydy=( e^{x}\log x+\frac{e^{x}}{x} )dx $
On integrating, $ \sin y=e^{x}\log x+c $ .