Differential Equations Question 321

Question: A particle starts at the origin and moves along the x-axis in such a way that its velocity at the point (x, 0) is given by the formula $ \frac{dx}{dt}={{\cos }^{2}}\pi x. $ Then the particle never reaches the point on

[AMU 2000]

Options:

A) $ x=\frac{1}{4} $

B) $ x=\frac{3}{4} $

C) $ x=\frac{1}{2} $

D) x = 1

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ \frac{dx}{dt}={{\cos }^{2}}\pi x $ . Differentiate w.r.t. t, $ \frac{d^{2}x}{dt^{2}}=-2\pi \sin 2\pi x=-ve $

$ \because $ $ \frac{d^{2}x}{dt^{2}}=0 $

Therefore $ -2\pi \sin 2\pi x=0 $

Therefore $ \sin 2\pi x=\sin \pi $

Therefore $ 2\pi x=\pi $

Therefore $ x=1/2 $ .